173 research outputs found

    Efficient Multimodal Deep-Learning-Based COVID-19 Diagnostic System for Noisy and Corrupted Images

    Get PDF
    Introduction: In humanity\u27s ongoing fight against its common enemy of COVID-19, researchers have been relentless in finding efficient technologies to support mitigation, diagnosis, management, contact tracing, and ultimately vaccination. Objectives: Engineers and computer scientists have deployed the potent properties of deep learning models (DLMs) in COVID-19 detection and diagnosis. However, publicly available datasets are often adulterated during collation, transmission, or storage. Meanwhile, inadequate, and corrupted data are known to impact the learnability and efficiency of DLMs. Methods: This study focuses on enhancing previous efforts via two multimodal diagnostic systems to extract required features for COVID-19 detection using adulterated chest X-ray images. Our proposed DLM consists of a hierarchy of convolutional and pooling layers that are combined to support efficient COVID-19 detection using chest X-ray images. Additionally, a batch normalization layer is used to curtail overfitting that usually arises from the convolution and pooling (CP) layers. Results: In addition to matching the performance of standard techniques reported in the literature, our proposed diagnostic systems attain an average accuracy of 98% in the detection of normal, COVID-19, and viral pneumonia cases using corrupted and noisy images. Conclusions: Such robustness is crucial for real-world applications where data is usually unavailable, corrupted, or adulterated

    A Multitier Deep Learning Model for Arrhythmia Detection

    Get PDF
    Electrocardiograph (ECG) is employed as a primary tool for diagnosing cardiovascular diseases (CVD) in the hospital, which often helps in the early detection of such ailments. ECG signals provide a framework to probe the underlying properties and enhance the initial diagnosis obtained via traditional tools and patient-doctor dialogues. It provides cardiologists with inferences regarding more serious cases. Notwithstanding its proven utility, deciphering large datasets to determine appropriate information remains a challenge in ECG-based CVD diagnosis and treatment. Our study presents a deep neural network (DNN) strategy to ameliorate the aforementioned difficulties. Our strategy consists of a learning stage where classification accuracy is improved via a robust feature extraction. This is followed using a genetic algorithm (GA) process to aggregate the best combination of feature extraction and classification. The MIT-BIH Arrhythmia was employed in the validation to identify five arrhythmia categories based on the association for the advancement of medical instrumentation (AAMI) standard. The performance of the proposed technique alongside state-of-the-art in the area shows an increase of 0.94 and 0.953 in terms of average accuracy and F1 score, respectively. The proposed model could serve as an analytic module to alert users and/or medical experts when anomalies are detected in the acquired ECG data in a smart healthcare framework

    Deep Learning Modalities for Biometric Alteration Detection in 5G Networks-Based Secure Smart Cities

    Get PDF
    Smart cities and their applications have become attractive research fields birthing numerous technologies. Fifth generation (5G) networks are important components of smart cities, where intelligent access control is deployed for identity authentication, online banking, and cyber security. To assure secure transactions and to protect user’s identities against cybersecurity threats, strong authentication techniques should be used. The prevalence of biometrics, such as fingerprints, in authentication and identification makes the need to safeguard them important across different areas of smart applications. Our study presents a system to detect alterations to biometric modalities to discriminate pristine, adulterated, and fake biometrics in 5G-based smart cities. Specifically, we use deep learning models based on convolutional neural networks (CNN) and a hybrid model that combines CNN with convolutional long-short term memory (ConvLSTM) to compute a three-tier probability that a biometric has been tempered. Simulation-based experiments indicate that the alteration detection accuracy matches those recorded in advanced methods with superior performance in terms of detecting central rotation alteration to fingerprints. This makes the proposed system a veritable solution for different biometric authentication applications in secure smart cities

    Synergic Deep Learning For Smart Health Diagnosis Of Covid-19 For Connected Living And Smart Cities

    Get PDF
    COVID-19 pandemic has led to a significant loss of global deaths, economical status, and so on. To prevent and control COVID-19, a range of smart, complex, spatially heterogeneous, control solutions, and strategies have been conducted. Earlier classification of 2019 novel coronavirus disease (COVID-19) is needed to cure and control the disease. It results in a requirement of secondary diagnosis models, since no precise automated toolkits exist. The latest finding attained using radiological imaging techniques highlighted that the images hold noticeable details regarding the COVID-19 virus. The application of recent artificial intelligence (AI) and deep learning (DL) approaches integrated to radiological images finds useful to accurately detect the disease. This article introduces a new synergic deep learning (SDL)-based smart health diagnosis of COVID-19 using Chest X-Ray Images. The SDL makes use of dual deep convolutional neural networks (DCNNs) and involves a mutual learning process from one another. Particularly, the representation of images learned by both DCNNs is provided as the input of a synergic network, which has a fully connected structure and predicts whether the pair of input images come under the identical class. Besides, the proposed SDL model involves a fuzzy bilateral filtering (FBF) model to pre-process the input image. The integration of FBL and SDL resulted in the effective classification of COVID-19. To investigate the classifier outcome of the SDL model, a detailed set of simulations takes place and ensures the effective performance of the FBF-SDL model over the compared methods

    An Integrated Approach for Cancer Survival Prediction Using Data Mining Techniques

    Get PDF
    Ovarian cancer is the third most common gynecologic cancers worldwide. Advanced ovarian cancer patients bear a significant mortality rate. Survival estimation is essential for clinicians and patients to understand better and tolerate future outcomes. The present study intends to investigate different survival predictors available for cancer prognosis using data mining techniques. Dataset of 140 advanced ovarian cancer patients containing data from different data profiles (clinical, treatment, and overall life quality) has been collected and used to foresee cancer patients’ survival. Attributes from each data profile have been processed accordingly. Clinical data has been prepared corresponding to missing values and outliers. Treatment data including varying time periods were created using sequence mining techniques to identify the treatments given to the patients. And lastly, different comorbidities were combined into a single factor by computing Charlson Comorbidity Index for each patient. After appropriate preprocessing, the integrated dataset is classified using appropriate machine learning algorithms. The proposed integrated model approach gave the highest accuracy of 76.4% using ensemble technique with sequential pattern mining including time intervals of 2 months between treatments. Thus, the treatment sequences and, most importantly, life quality attributes significantly contribute to the survival prediction of cancer patients

    A Multitier Deep Learning Model for Arrhythmia Detection

    Get PDF
    An electrocardiograph (ECG) is employed as a primary tool for diagnosing cardiovascular diseases (CVDs). ECG signals provide a framework to probe the underlying properties and enhance the initial diagnosis obtained via traditional tools and patient-doctor dialogs. Notwithstanding its proven utility, deciphering large data sets to determine appropriate information remains a challenge in ECG-based CVD diagnosis and treatment. Our study presents a deep neural network (DNN) strategy to ameliorate the aforementioned difficulties. Our strategy consists of a learning stage where classification accuracy is improved via a robust feature extraction protocol. This is followed by using a genetic algorithm (GA) process to aggregate the best combination of feature extraction and classification. Comparison of the performance recorded for the proposed technique alongside state-of-the-art methods reported the area shows an increase of 0.94 and 0.953 in terms of average accuracy and F1 score, respectively. The outcomes suggest that the proposed model could serve as an analytic module to alert users and/or medical experts when anomalies are detected

    Upgrading Milk Productivity of Primiparous Buffaloes Using Glycogenic Precursors; Implications on Milk Production and Blood Biochemical Parameters

    Get PDF
    This study was performed to explore the effect of drenching propylene glycol (PG) and calcium propionate (CP) as a source of energy to primiparous Egyptian buffalo cows (Bubalus bubalis) on milk production and some blood biochemical parameters. Eighteen primiparous buffalo cows (8 weeks before calving) with an average live body weight (LBW) of 500±25kg and aged 35±5 months were used. Animals were classified to three comparable groups (6, each) based on (LBW), body condition scores and expected calving date. Animals in the 1stgroup served as a control (C), were drenched 3L of saline solution (NaCl 0.9%) without any additives, the animals in the 2nd group (PG) were drenched 300 mL of propylene glycol dissolved in 3L of a saline solution. In the 3rd group (CP), animals were drenched 335g of calcium propionate dissolved in 3L of a saline solution. Milk production and milk composition of primiparous buffalo cows were measured. Blood samples were collected from all buffalos for biochemical analysis. Results showed significant effects on average daily and total milk yield but no significant difference on milk composition. All blood biochemical parameters revealed no significant variation between treated and control groups except for plasma beta-hydroxy butyrate (BHB) and both T3 and T4 hormones concentrations. The overall mean of BHB in treated (PG) and (CP) was also lower (17.67 and 14.67 vs. 26) than control group. Overall mean of T3 concentration hormone was the lowest in control group represented 3.13 vs. 5.28 and 4.99 ng/ml) for (PG) and (CP) treated group. The highest overall mean of T4 concentration hormone was recorded in (CP) treated group represented 19.55 ng/ml. Concisely, the present results indicate that drenching (PG) and (CP) have a positive effect on the productive traits of primiparous Egyptian buffalo cows while, did not affect the blood biochemical parameters
    • …
    corecore